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Afmtruet — Groove guide, one of severaf low-loss wavegnides proposed

some years ago for use at millimeter wavelengths, is again receiving

attention in the literature. A new transverse equivalent network and

dispersion relation for the properties of the dominant mode are presented

here which are extremely simple in form and yet very accnrate. Compari-

sons with accurate published measurements indicate better agreement with

this new theory than with arty previons theory.

I. INTRODUCTION

A. Background

G ROOVE GUIDE is one of a group of waveguiding

structures proposed some 20 or more years ago for

use at millimeter wavelengths. Those waveguides were not

pursued beyond some initial basic studies because they

were not yet needed, and because adequate sources for

millimeter waves were not yet available. Today, such sources

are readily available, and the many advantages of millimet-

er waves are becoming increasingly appreciated.

It was also recognized some years ago that the shorter

wavelengths associated with millimeter waves produce

problems relating to the small size of components and the

high attenuation of waveguides. New types of waveguide

were therefore proposed for which the attenuation per unit

length would be substantially lower than that for customary

waveguides, and for which, in some cases, the cross-section

dimensions were greater. For components which are only a

wavelength or so long, somewhat lossier waveguides are

acceptable, and indeed waveguides such as microstrip and

finline are being employed successfully in this connection,

particularly at the longer wavelength end of the

millimeter-wave range. For long runs of waveguide, how-

ever, and for certain components such as leaky-wave anten-

nas, for example, which may typically be 20 A ~ to 100 A ~

in length, where A ~ is the free-space wavelength, the intrin-

sic attenuation of a lossy waveguide would compete with

the leakage loss corresponding to the radiation, and it

could seriously interfere with the antenna performance.
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Therefore, attention is again being paid to new types of

low-loss waveguide, one of which is groove guide.

Results for the propagation characteristics of the dcnni-

nant mode in groove guide have been published previously.

There exist theoretical expressions which are simple but

approximate, more accurate expressions which involve in-

finite sums and are messy to compute from, and careful

measured results. We present in this paper a new expres-

sion for the propagation constant of groove guide, which, is

ve~ accurate, yet in closed form and simple. A derivation is

presented of the new expression, and then comparisons are

made with previously published theoretical and experimen-

tal results. It will be seen that the new expression provides

excellent agreement with measurement, and in fact better

agreement than with any previous theoretical data.

The motivation for obtaining an improved expression for

the propagation constant of groove guide, and in the

process a transverse equivalent network which is simple

and whose constituents are all in closed form, is that

groove guide appears to be an excellent low-loss waveguide

upon which can be based a number of novel leaky-wave

antennas for the millimeter wavelength range. The results

of this paper then form an important step in the analysis of

such antennas. One antenna in this class has been de-

scribed recently [1], [2]. It should be added that, in view of

the small size of waveguiding structures at millimeter wave-

lengths, leaky-wave antennas form a natural class of anten-

nas for these wavelengths.

B. The Properties of Groove Guide

The cross section of groove guide is shown in Fig. 1, and

an indication of the dominant-mode electric field lines

present in its cross section is given in Fig. 2(a). One should

first note that the structure resembles that of rectangular

waveguide with most of its top and bottom walls removed.

The groove guide can therefore be excited by providing a

smooth tapered transition between it and a feed rectangu-

lar waveguide. Furthermore, if symmetry is maintained,

many components can be designed for groove guide which

are analogs of those in rectangular guide.

With respect to the low-loss nature of groove guid~, we

should recall that when the electric field is parallel to the

metal walls the attenuation associated with those walls

decreases as the frequency is increased; conversely, the
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Fig. 1. The open groove guide, comprised of two parallel metaf plates
whose central regions are grooved outwards.
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Fig. 2. The electric field of the dominant mode in open groove guide. (a)
A sketch of the electric field lines in the cross section. (b) An approxi-

mate plot of the verticaf component .5Y as a function of vertical

position y, showing that the guided mode is bound transversely to the

central grooved region.

attenuation increases with increasing frequency when the

electric field is perpendicular to the walls. Since, in groove

guide, theelectric field isseento bemostly parallel to the

walls, its overall attenuation at higher frequencies is much

lower than that of rectangular waveguide, where most of

the field is perpendicular at the top and bottom walls.

The greater width in the middle, or central, region was

shown by T. Nakahara [3]–[5] to serve as the mechanism

that confines the field in the vertical direction, much as the

dielectric central region does in H guide. The field thus

decays exponentially away from the central region in the

narrower regions above and below, as shown in Fig. 2(b).

If the narrower regions are sufficiently long, it does not

matter if they remain open or are closed off at the ends.

One may therefore regard the change from rectangular

waveguide to groove guide as involving the replacement of

most of the top and bottom walls in rectangular waveguide

by reactive walls.

Work on the groove guide progressed in Japan [6], [7]

and in the United States [8]–[10] until the middle 1960’s,

but then stopped and was later revived and developed

further by D. J. Harris and his colleagues [11], [12] in

Wales. The recent work is mainly experimental, being

associated with components for groove guide.

The theoretical approach to the propagation constant of

the dominant mode taken by most of the previous inves-

tigators [4]–[7], [9] has been to produce a first-order result

by taking only the dominant transverse mode in each

region of the cross section, and then obtaining the disper-

sion relation on use of the transverse resonance condition.

That procedure, which neglects the presence of all higher

transverse modes, is equivalent to accounting for the step

junction between the central and outer regions by employ-

ing a transformer only, and by ignoring the junction sus-

ceptance entirely. With that approximation, a simple dis-

persion relation is obtained, which produces reasonably

good agreement with measured data when the step discon-

tinuity is small. More accurate theoretical phrasings were

presented in [4]–[7] by accounting for the susceptance by

taking an infinite number of higher modes on each side of

the step junction and then mode matching at the junction.

The resulting expressions involve matrices which, even

after the necessary truncation, are messy to compute from.

When only one or two higher modes are included, as in [6]

and [7], the improvement in accuracy is quite small, and

the added complexity in calculation is substantial.

The approach in this paper is to establish a proper

transverse equivalent network, identify the appropriate

transverse mode (which is hybrid), obtain an accurate

expression in closed form for the step-junction suscep-

tance, and then apply the transverse resonance condition to

the now-complete transverse equivalent network, which

yields the relevant dispersion relation for the propagation

constant. This dispersion relation is simple, in closed form,

and very accurate, as demonstrated in Section III, by

comparison with measured data from [4] and [5].

II. THE TRANSVERSE EQUIVALENT NETWORK

The complete transverse equivalent network for the

groove guide is derived in this section by starting with a
proper phrasing of the problem and then by putting to-

gether all the constituent elements. From this network,

which characterizes the cross section of the guide, we

finally obtain, via the transverse resonance condition, a

dispersion relation for the propagation constant which is in

simple closed form and yet accurate. The essential new

constituent in the transverse equivalent network is a simple

closed-form expression for the step-junction susceptance.

A. Transverse Resonance Approach

The general transverse resonance approach to deriving

the propagation characteristics of a wavcguiding structure

is to obtain first a transverse equivalent network descriptive

of the guide’s cross section. That network is based on a

building-block approach, in which uniform waveguide re-

gions in the cross section are represented by transmission

lines, and junctions or’other discontinuities are represented

by lumped elements. By inspection of the field configura-

tions in the respective regions of the cross section, one then

identifies the correct modes which the transmission lines

represent, and then obtains the appropriate mode functions

for those modes and the proper characteristic impedances

for the transmission lines. The lumped elements corre-

sponding to the discontinuities can be recognized in some
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P--% ?
versely and the primed (outer) transmission line is below

l\H

cutoff transversely. (Those statements represent the facts

k’Y that the fields in the central region of the groove guide iwe
, transversely lpropagating, and that those in the outer re-

gions are transversely evanescent, as shown in Fig. 2(lb).

..:. 1“2: 1“2
However, propagation occurs longitudinally in all parts of

the cross section, of course.) If the below-cutoff primed

line is sufficiently long, it does not matter how the line is

*
terminated. On the other hand, if the narrower outer

(b) sections of the groove guide are closed by metal plates, and
Fig. 3. Simplifications produced by short-circuit bisection. (a) Cross the outer sections (of length c, say) are nOt Sufficiently

section of groove guide. (b) Form of transverseequivalent network.
long, the primed transmission line in the network of Fig.

3(b) must be terminated by a short circuit after a length c
instances, but need to be derived in other cases. When all of transfissi,on line. TMs “closed” groove guide case lnas

the constituents of the network are known, a dispersion been treated in det~l (in a different way) in [6] and [7].

relation for the propagation characteristics of the wave- The box in Fig. 3(b) represents the step-junction discon-
guide is obtained by application of the transverse reso- tinuitY, and it is discussed in detail in Section II-C. The

nance condition. treatment of the step junction in this paper represents the
A simplification in the transverse equivalent network is basis for our new contribution.

immediately available here by taking symmetry into After all tlhe constituent portions of Fig. 3(b) have been
account. By inspection of the structure in Fig. 1 ~d the properly characterized, the dispersion relation for the

field lines in Fig. 2(a), it is evident that the cross section domin~t mode is found from the lowest resonance of this

can be bisected in short-circuit fashion, and that the result- network. That step is discussed in Section II-D.

ing cross section and the corresponding form of the trans-

verse equivalent network become the simplified ones shown ~. The Transverse Mode Functions

in Fig. 3(a) and (b), respectively. To properly characterize the transmission lines ifl the
We must first identify the transverse mode which each transverse equivalent network of Fig. 3(b), we must iden-

transmission line represents, and correspondingly de- tify the corr~>ct mode in the y-direction. We first note tlhat

termine how the characteristic admittances YO and Y~ with respect to the Z- (longitudinal) direction, the overall

relate to the transverse wavenumbers kY and kj. These guided mode is a TE (or H) mode; that is, there exists only

relations are discussed in the next section, together with the a component of H in the z-direction. This result is to be

transverse mode functions. Since the longitudinal mode expected since the groove guide consists of a perfectly

under investigation is the dominant mode of groove guide, conducting outer structure filled with only a single dielec-

we recognize that the transverse wavenumbers in the x- tric material (air). In the y-direction, however, there exist
direction are both EY and Hy components, so that the mode is hybrid in

kX=~ and k;=; (1) that dmection.

Since the groove guide is un~orm in the z-direction, and
in the central region of height b and in the outer regions, its field has only an Hz component, the hybrid mode in the
respectively, so that the various transverse wavenumbers y-direction is seen to be what is called by some an H-type

are related to the longitudinal (propagation) wavenumber mode with rf:spect to the z-direction, and by others an LSE

k== /3 by the sum of the squares relations mode with respect to the z-direction. We prefer the former

/32=k&k~ -(@2 (2)
notation, and we shall designate the mode in the y-direc-

tion as an H(=)-type mode. Altschuler and Goldstone [13]

~’= k; - k$’ - (r/a’)’. (3) discuss such modes in detail and present the field compo-

The free-space wavelength AO, the guide wavelength Xg of
nents for them and the characteristic admittances for trans-

the longitudinal mode, and the cutoff wavelength A ~ of the
mission lines representative of them.

longitudinal mode are given by
For the transmission lines in Fig. 3(b), we therefore

reauire the lmode functions and transmission-line proper-

where the total transverse wavenumber kt is

k?= kj +(r/a)2 = kj’ + (m/a’)2. (5)

Since the cross section contains only a single dielectric

medium, the total transverse wavenumber kl is a constant

independent of frequency.

Since the guided dominant longitudinal mode is non-

radiating, kY is real and k; must be imaginary; that is, the

unprimed (central) transmission line is above cutoff trans-

,
ties of an H(z)-type mode in parallel-plate guide, which

propagates in the y-direction and is hybrid in that direc-

tion, but has only an H, component in the z-direction. The

coordinate system is that given in Fig. 3(a), but it differs by

a rotation from the one employed in [13]. For our mode of

interest, for which kX = m/a, we find that the characteristic

admittance is given by

(6)
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where k ~ is the propagation constant of the transmission

line. Consistent with this specification, the electric and

magnetic field vector mode functions e and h satisfy the

orthonormality condition

JhXyO. e*dS=l (7)
s

where the integration is performed over the cross section

normal to y, and we have

eX(x, z)=–hz(x, z). (8)

For the parallel-plate region, using (7), we find

rex(x)= ~sin~=–hz(x) (9)

where the z-dependence everywhere is exp ( – jkzz ), and

kZ = &

The other field components are readily written as

iwzz(x, z)
~x(%z)=k2:k2axaz02

1 deX(x, z)
eY(x, z)=- ax

JkY

– JkY 6%z(x, Z)

hy(~, z)= k2_k2 6’Z

02

so that

jkz

[
hX(x) = k2_k2 ~ :COS~ (lo)

02

r

2T1
eY(x) = ——-cos~

a a JkY
(11)

r kYkZ
hY(x)= z sin E.

a k~–k; a
(12)

Again, the exponential dependence on z is omitted because

it is the same for all field components.

The complete field expressions for the mode follow

simply as

EX(X, y,z) = V(y)eX(x)e-~+

HX(x, y,z)=l(y)hx(x )e-~~zz

Hz(x, y,z)=l(y)hz(x) e-~~zz (13)

for the transverse (to y) field components, and

Ey(x, y,z) = ZoI(y)ey(x)e-Jk’z

Hy(x, y, z) =YoV(y)hY(x)e-~~zz (14)

for the longitudinal components, where Y. ( = l/Zo) is

given by (6).

C. The Equivalent Network for the Step Junction

The step junction is a lossless asymmetric discontinuity,

and it therefore requires three real quantities for its char-

acterization. A useful equivalent circuit representation for

that type of structure is the one shown in Fig. 4. It has

Ax

-3+=”’‘@It’v
I T n:l T

(al (b)

Fig. 4. The step junction and a rigorous equivalent circuit representa-

tion for it.

been found by experience with careful measurements on a

variety of step-junction discontinuities in rectangular wave-

guide [14] that the series reactance X. is always very small,

and that for most situations it maybe safely neglected. The

representation in Fig. 4(b) thus conveniently reduces to a

shunt network comprised of a shunt susceptance B and a

transformer with turns ratio n.

1) The Transformer Turns Ratio: From the equivalent

circuit of Fig. 4(b), after setting X. = O, we see that the

transformer turns ratio is given simply by

(15)

Consistent with (13) for the transverse electric field, we

have the voltages V and V’ given by

v(o) = f’” Et(x, O, z). e”(x, z) dxdz
—a’/2

v’(o)=~a’”2~t(x,oz)e’”(x,z)d~dz (16)
– a ‘/2

since y = O defines the plane of the step junction shown in

Fig. 4(a) and the step is uniform along z. For simplicity,

we choose the aperture transverse electric field Et to be

E,(x, O, z) = Ea(x)e-~k:’xo =Asin~e-y~’2xo. (17)

On use of (9) for the mode function (taking the exponential

dependence into account) and relations (16) and (17),

expression (15) for n simplifies to

~{

a’/2 2 ‘2 ‘TX
~ sin ~ dx

– a ‘/2 a

so that

7ra’

[1
~3/24 Coszn= E

a
(18)

= l–(a’/a)2

2) The Shunt Susceptance: To our knowledge, an ex-

pression for the shunt susceptance for the step junction

subject to the excitation shown in Fig. 2(a) is not available

in the literature. By a simple additional step, however, we

can adapt an available, but not widely known, result to our

discontinuity of interest.

We first make use of the statement summarized in Fig. 5.

To interpret that statement, we recall that the susceptance
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Fig. 5. Discontismities and corresponding equivalent circnits. (a) Sym.

metrical planar aperture. (b) Step junction with the same a and a‘
dimensions as in (a).

associated with a discontinuity is proportional to its stored

power, which is comprised of the evanescent higher modes

trapped in its vicinity. With the symmetrical discontinuity

in Fig. 5(a), for which the equivalent susceptance is B,, the

stored power is the same on each side of the aperture, so

that each side of the aperture can be considered as contrib-

uting one-half of the susceptance. For the unsymmetrical

step junction in Fig. 5(b), the electric field in the aperture

will not be identical to that in the aperture of the symmet-

rical discontinuity, but it will not be much different from

it. Assuming the two aperture fields to be the same, the

contribution to the susceptance of the step junction from

the side of height a (in Fig. 5(b)) is thus equal to B, /2.

With respect to the narrow side, of height a’, the field

curvature, and therefore the higher mode stored power, is

much smaller than that on the other side, although it is not

zero. We have found, by experience with careful measure-

ments on step junctions of various types in rectangular

waveguide [14], that to a very good approximation the

susceptance of the total step junction is equal to about 0.55

B,, as indicated in Fig. 5, where the narrower side contrib-

utes about one-tenth as much as the wide side. The actual

proportion contributed by the narrower side would vary

somewhat with a’/a; the ratio 0.55 must be greater than

0.50, however, which would mean no contribution at all

from the narrower side, and is not likely to be greater than

0.60, which corresponds to twice the contribution implied

by 0.55, and which we did not find in prior experience. The

average value of 0.55 that we choose is therefore not wrong

by much, if at all.

Using the rule of thumb discussed above and sum-

marized in Fig. 5, we may seek an expression for the

susceptance of the appropriate symmetric discontinuity,

subject to the incident excitation seen in Fig. 2(a), and then

take 0.55 times it for the susceptance of the step junction.

That symmetric discontinuity is not included in the Waue-

guide Handbook [15], but it is discussed in Volume 8 of the

same series [16] in the context of how Babinet’s principle

may be used creatively. The expression for the susceptance

given there [16] for the symmetric aperture, times 0.55 so

that it applies to the step junction of Fig. 5(b), and restated

in terms of kY, is

(19)

Fig. 6. Complete transverse equivalent network for open groove, guide,

for the excitation indicated in Fig. 2(a).

With (19), and (18) for the turns ratio, we now have

available expressions for the parameters of the equivalent

network for the step junction which are both simple and

accurate.

D. The Complete Transverse Equivalent Network

In the previous sections, we have deduced all the con-

stituent elements that comprise the transverse equivalent

network for the groove guide under the excitation outlined

in Fig. 2(a),, The form presented in Fig. 3(b) can thus be

delineated as shown in Fig. 6, where the network has been

placed horizontally for convenience. The expressions for

parameters B, n, and Y. (and therefore Y<) are given
respectively by (19), (18), and (6). The form of the network

and the expressions for its constituents are seen to be

eminently simple, and yet they ch~acterize the structure

very accural,ely.

Once the network in Fig. 6 becomes available, the de-

termination of the dispersion relation for the lowest mode

becomes an essentially trivial task. We choose a reference

plane T somewhere, say just to the left of susceptance B,

and apply the transverse resonance relation

f(T)+ ?(T)=O

yielding

b 1 Y~
.—_+jg.jcotkY7 – nz ~0 (20)

We next recognize, as have all the previous authors, that

the outer regions, with wavenumber k;, are transversely

evanescent, so that

kj= – jlkjl (21)

and the transmission line extending to infinity is below

cutoff. Using (21), we note from (6) that

Y~ ky

Y. = J~ (22)

so that (20) becomes

b 1 kY
cotkY5 = ——

[
+ ky 0.552 cot2 ~ 1 {23)

nz lk~l ‘ir

where (19) was employed and where it is recognized that n

is a geometry-dependent constant, independent of the

wavenumbers.
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The transverse wavenumbers kY and Ik$l are related to

the Longitudinal wavenumber kz=& and the frequency,

via ko, by

(24)

for the central and outer regions, respectively, so that by

subtraction we have

(25)

Relation (25) may then be placed into (23) to yield an

explicit expression for ky, which is seen to be dependent

on geometry only, and therefore independent of frequency.

The cutoff wavenumber kC for the groove guide then

becomes simply

(26)

The early first-order solution derived by various authors

[4]-[7], [9] corresponds precisely to the first two terms in

(23). The third term in (23) represents a particularly simple

and convenient way to take into account the influence of

all the higher modes, which the first-order solution ad-

mittedly neglects. The higher modes have alternatively

been included [4]-[7] by a mode-matching technique which

yields a dispersion relation in matrix form involving a

series of linear equations. The truncation of the matrix

depends on the number of higher modes taken into account,

but complexity increases rapidly and the added contribu-

tion from the next one or two modes has been found to be

small [6], [7]. On the other hand, the third term in (23)

eliminates the need for such matrix calculations, and per-

mits one to obtain highly accurate final results with very

little extra calculational effort. Comparison with careful

measurements from the literature [4], [5] is made in the

next section.

One final remark may be helpful. Confusion exists in the

literature regarding what is meant by the “transverse reso-

nance solution.” It is interpreted by some to mean only the

first-order solution, in contrast to the mode-matching pro-

cedure which is viewed as “exact.” The mode-matching

process is exactly phrased, but it becomes necessarily ap-

proximate once the matrix is truncated. Its accuracy must

then be examined relative to that of other approximate

methods, such as the one leading to (23). Furthermore, all

of these procedures are transverse resonance solutions; the

transverse resonance method can be employed to various

degrees of accuracy, and may or may not be phrased in

direct network terms, as it has been here.

HI. NUMERICAL RESULTS

The principal aim of this section, in its presentation and

discussion of numerical results, is to ueri~ the accuracy of

the new theoretical results presented in Section II, as

embodied in dispersion relation (23) and the simple trans-
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Fig. 7. Theoretical values of AC/2 a, where AC is the cutoff wavelength,

versus relative width a ‘/a of groove guide. In these calculations,

b/a = 0.400. The solid curve represents our improved theory, and the
dashed curve corresponds to the first-order theory of Nakahara and
Kurauchi [4], [5].

verse equivalent network shown in Fig. 6. Toward this end,

we present in Section III-A below a comparison between

our theoretical numbers and the careful experimental re-

sults of Nakahara and Kurauchi [4], [5]. A secondary

purpose is the presentation of additional numerical results,

showing parametric dependence which have not been given

previously. Those additional numerical data appear in Sec-

tion III-B.

A. Comparison with Measurements

Nakahara and Kurauchi (referred to hereafter as N–K)

have presented in English their early comprehensive study

of groove guide in the form of two papers, which bear the

same title and overlap each other substantially [4], [5]. The

two figures with which we shall make comparisons are

identical in each, but the figure numbers are different for

one of them. One of these figures presents first-order

theoretical numbers for the variation of the cutoff wave-

length A ~ ( = 2~/kc) with the relative width of the outer

sections. We will superimpose our more accurate theoreti-

cal numbers on their plot to indicate that the corrections

introduced by our theory can be significant over a large

range of parameter values. The other figure contains their

experimental data together with first-order theoretical val-

ues for a number of guide cross sections. We shall superim-

pose our theoretical values on their plots to show the
improvement provided by our theory.

It should be pointed out that the symbols used for

various dimensions are different in our paper and in those

by N–K. Their b and c are our a and a’, and their 21 is

our b; the coordinate systems are identical. In the discus-

sion that follows, we employ our notation.

We first make comparison with the N–K first-order

theoretical values for At/2a versus a’/a, which appear as

Fig. 8 in both of their papers. That curve is duplicated in

Fig. 7 here as the dashed curve; the solid curve corresponds

to the solution of (23) and then use of (26). It is seen that

the two curves are almost identical for a’/a >0.8. In that
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Fig. 8. Comparisons between measured and theoretical values of the

cutoff wavelength A ~ for groove guides of various cross sections. The
solid lines represent our improved theory, the dashed curves are the
first-order theoretical values, and the points are the measured results of
Nakahara and Kurauchi [4], [5]. ‘he insets indicate the cross-section

geometries for each measured point, where the numbers are in centime-

ters.

range, the value of susceptance B/ YO is relatively small, so

that its neglect in the first-order theory is justified. For

smaller a ‘/a values, however, the discontinuity y due to the
step junction is more pronounced, and the susceptance

contribution becomes more important, as is evident from

Fig. 7.

In their papers, N–K make the following interesting

observation. In the limit for which a’/a =1, the modal

configuration becomes that of the TEI mode in parallel-

plate waveguide of width a. In the other limit, a’/a = O,

ky/ko

Iz!!l

0.3

0 0.s 1.0

dla

! 1 (c)

2.0 -

lk’yl/ko

1.0 -

0
0 0.s 1.0
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Fig. 9. The variations of ~/kO, kY/kO, and [k~ I/kO as a function of

groove guide relative width a’/a, wth a =1.00 cm and b\a = 0.400, at
a frequency of 28.0 GHz. /3 is the propagation wavenumber, and k”
md \k; 1are transverse wavenumbers.

one obtains the TEI ~ mode in rectangular waveguide of

width a. In both limits, the value of A ~/2a should equal

unit y, as found in Fig. 7. The curves are therefore exact in

the limits and reasonably accurate elsewhere. The solid

curve, corresponding to our theory, should everywhere be

more accurate than the first-order theory, which is the one

that is usually employed and is represented by the dashed

line.

In [5, fig. !)] and [4, fig. 10], N–K present the results of

careful measurements on a variety of groove guides. They

give the measured values of A ~ as a function of a’ for

groove guides of different cross sections, and they show

how these values compare with curves obtained using

first-order thleory. All of those data, plus our theoretical

numbers, are contained in Fig. 8(a) and (b) presented here;

the first-order theory is represented by dashed lines, our

more accurate theory by solid lines, and the measured data

as discrete points. The cross sections corresponding to each

set of curves are shown as insets.

It is seen that our theoretical curves agree very well with

the measurecl values in almost all cases. On the other hand,

the first-order theoretical values are systematically some-

what below both our theory and the measured data. It

appears, therefore, that the first-order theory represents a

rather good approximation, considering its simplicity, and

that the new theory using (23) is indeed significantly more

accurate.

B. Additional Numerical Results

A few additional numerical results are presented here

which illustrate the dependence of the propagation (longi-
tudinal) wavenumber ~ ( = k=) and the transverse wave-

numbers k ~ and Ik; I upon the two geometric ratios a “/a

and b/a. Our improved theory is employed in determining

these numbers. The propagation wavenumber /3 varies with

frequency, but the transverse wavenumbers do not. IPor

convenience, however, all wavenumbers in the discussion
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Fig. 10. Variation of certain wavenumbers with groove guide aspect ratio b/a, with a = 1.00 cm and a ‘/a= 0.700, at a

frequency of 28.0 GHz. (a) Propagation wavenumber /3, (b) transverse wavenumber ]k; 1, (c) transverse wavenumber k}, and

(d) the ratio of the exciting field at the step jmction to that at the groove center.

below are normalized to the free-space wavenumber kO,

corresponding to a frequency of 28.0 GHz, so that k. =

5.87/cm and A ~ = 1.07 cm. The width a is also specified as

1.00 cm in these calculations.

We consider first the variations with a’/a. It was

remarked above that at the two limit points a’/a = O and

a ‘/a = 1 the groove guide structure degenerates respec-

tively into a rectangular waveguide of width a and a

parallel-plate waveguide of width a, with TEIO-mode exci-

tation in the former and TE1-mode excitation in the latter.

Thus, for a’/a = O. we would expect kY = O, ]k$l = m, and

~/k. = 0.844. For a’/a = 1, we should find k,= O, lk~l =

O, and P/kO = 0.844 again.
The dependence of ~/ko, kY/kO, and lk$l/kO as a

function of a’/a are shown in Fig. 9(a)–(c), respectively.

For these curves, b = 0.400 cm. It is seen from Fig. 9(a)

that the value of ~/kO does not vary by more than about

+ 5 percent over the whole range of a’/a, with the highest

values at the end points and the lowest value near a’/a =

0.7. Comparison of Fig. 9(b) with Fig. 7 shows that kY/kO

and A ~/2a vary qualitatively with a’/a in much the same

way, but in inverse fashion; the deviation from the end

points is greatest near a’/a = 0.7 for both. The biggest

variation appears in Fig. 9(c) for Ik$ 1, since it must vary

from zero to infinity between the end points. It is clear,

then, that greater confinement of the fields to the central
region is achieved simply by reducing the a ‘/a ratio, and

that the value of 13/k0 ( = A ~/A ~) is changed little in the

process.

Finally, we consider the variation of these wavenumbers

with b/a, the aspect ratio of the groove guide. In the limit

b/a = O, the groove guide becomes a parallel-plate guide of

width a’, supporting the TEI mode. Thus, we would find

Ikjl = O, kX = n/a’, 8/k0 = 0.644 at 28.0 GHz, and ky/kO

taking on the limiting value 0.547. The behavior of the

wavenumbers with b/a, for a’/a = 0.700, a = 1.00 cm, and

a frequency of 28.0 GHz, are presented in Fig. 10(a)–(c).

The end-point performance is as anticipated, but it is

also seen that ~/kO and Ik$ I/kO do not change much at

the larger values of b/a. (Of course, even small changes in

lk~l may be significant since that wavenumber appears in

an exponential.) The variation of kY /kO with b/a seems

strong, but its significance is better appreciated when the

function cos (kYb/2) is evaluated. That function indicates

the ratio of the dominant transverse mode field at the step

junction to that at the groove center, and is shown in Fig.

10(d). It is therefore seen that even though k, is larger

when b is smaller, the product kY b decreases as b is

reduced, and the actual field variation with y in the central

region becomes less.
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IV. CONCLUSIONS

A new solution is presented here for the propagation

properties of the dominant mode in open, but nonradiat-

ing, groove guide. This solution is a significant improve-

ment over the ones contained in the literature, in that it

permits highly accurate results for the propagation’ con-

stant even though it is simple and in closed form. Further-

more, the solution is accurate over a wide range of geomet-

ric parameter values.

The dispersion relation for the propagation properties of

the dominant mode is (23), and it corresponds to the

lowest resonance of the transverse equwalent network given
,.

in Fig. 6. Expressions for all the elements of this network

have been derived in such a way that they are in simple

closed form, and yet they are accurate representations.

These derivations are presented in detail in Section II. The

essentially new contribution involves the characterization

of the step-junction discontinuity. Previous’ representations

either neglected the higher mode content or accounted for

the higher modes in a slowly convergent manner. Our

contribution is to deduce a simple closed-form expression

for that discontinuity which accurately accounts for the

higher modes. As a result, the complete transverse equiv-

alent network contains all elements in simple closed form,

leading to a dispersion relation which is correspondingly

simple.

The most important numerical discussion in Section III

is that which relates to Fig. 8; comparisons are presented

in Fig. 8 of measured and theoretical results for four

different sets of geometries. The careful measurements

were taken by Nakahara and Kurauchi [4], [5]; and the

theoretical values are of two types: first-order results also

presented by Nakahara and Kurauchi [4], [5], and numbers

obtained using our improved theory. The comparisons

show clearly that our theory is significantly more accurate,

and agrees very well” with the measurements. ‘

Other numerical calculations are presented in Section III

to demonstrate other performance features. For example, a

comparison in Fig. 7 involving A. shows that the ap-

profirnate solution can yield rather good results when

a’/a >0.8, where the step-junction discontinuity is small,

but that significant errors can arise for other values of

a’/a. It is also shown that the confinement of fields in the

cross section to the central region can be controlled

dramatically by simply adjusting the a’/a ratio, and that

the longitudinal wavenumber /3 is not strongly affected by

such an adjustment. The dependence of the wavenumbers

on the aspect ratio b/a are also discussed.
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