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The Dominant Mode Properties of
Open Groove Guide:
An Improved Solution

ARTHUR A. OLINER, FELLOW, IEEE, AND PAOLO LAMPARIELLO, SENIOR MEMBER, IEEE

Abstract —Groove guide, one of several low-loss waveguides proposed
some years ago for use at millimeter wavelengths, is again receiving
attention in the literature. A new transverse equivalent network and
dispersion relation for the properties of the dominant mode are presented
here which are extremely simple in form and yet very accurate. Compari-
sons with accurate published measurements indicate better agreement with
this new theory than with any previous theory.

I. INTRODUCTION

A. Background

ROOVE GUIDE is one of a group of waveguiding

structures proposed some 20 or more years ago for
use at millimeter wavelengths. Those waveguides were not
pursued beyond some initial basic studies because they
were not yet needed, and because adequate sources for
millimeter waves were not yet available. Today, such sources
are readily available, and the many advantages of millime-
ter waves are becoming increasingly appreciated.

It was also recognized some years ago that the shorter
wavelengths associated with millimeter waves produce
problems relating to the small size of components and the
high attenuation of waveguides. New types of waveguide
were therefore proposed for which the attenuation per unit
length would be substantially lower than that for customary
waveguides, and for which, in some cases, the cross-section
dimensions were greater. For components which are only a
wavelength or so long, somewhat lossier waveguides are
acceptable, and indeed waveguides such as microstrip and
finline are being employed successfully in this connection,
particularly at the longer wavelength end of the
millimeter-wave range. For long runs of waveguide, how-
ever, and for certain components such as leaky-wave anten-
nas, for example, which may typically be 20 A, to 100 A,
in length, where A is the free-space wavelength, the intrin-
sic attenuation of a lossy waveguide would compete with
the leakage loss corresponding to the radiation, and it
could seriously interfere with the antenna performance.
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Therefore, attention is again being paid to new types of
low-loss waveguide, one of which is groove guide.

Results for the propagation characteristics of the domi-
nant mode in groove guide have been published previously.
There exist theoretical expressions which are simple but
approximate, more accurate expressions which involve in-
finite sums and are messy to compute from, and careful
measured results. We present in this paper a new expres-
sion for the propagation constant of groove guide, which is
very accurate, yet in closed form and simple. A derivation is
presented of the new expression, and then comparisons are
made with previously published theoretical and experimen-
tal results. It will be seen that the new expression provides
excellent agreement with measurement, and in fact better
agreement than with any previous theoretical data.

The motivation for obtaining an improved expression for
the propagation constant of groove guide, and in the
process a transverse equivalent network which is simple
and whose constituents are all in closed form, is that
groove guide appears to be an excellent low-loss waveguide
upon which can be based a number of novel leaky-wave
antennas for the millimeter wavelength range. The results
of this paper then form an important step in the analysis of
such antennas. One antenna in this class has been de-
scribed recently [1], [2]. It should be added that, in view of
the small size of waveguiding structures at millimeter wave-
lengths, leaky-wave antennas form a natural class of anten-
nas for these wavelengths.

B. The Properties of Groove Guide

The cross section of groove guide is shown in Fig. 1, and
an indication of the dominant-mode electric field lines
present in its cross section is given in Fig. 2(a). One should
first note that the structure resembles that of rectangular
waveguide with most of its top and bottom walls removed.
The groove guide can therefore be excited by providing a
smooth tapered transition between it and a feed rectangu-
lar waveguide. Furthermore, if symmetry is maintained,
many components can be designed for groove guide which
are analogs of those in rectangular guide.

With respect to the low-loss nature of groove guide, we
should recall that when the electric field is parallel to the
metal walls the attenuation associated with those walls
decreases as the frequency is increased; conversely, the
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Fig. 1. The open groove guide, comprised of two parallel metal plates

whose central regions are grooved outwards.

()

Fig. 2. The electric field of the dominant mode in open groove guide. (a)
A sketch of the electric field lines in the cross section. (b) An approxi-
mate plot of the vertical component E, as a function of vertical
position y, showing that the guided mode is bound transversely to the
central grooved region.

attenuation increases with increasing frequency when the
electric field is perpendicular to the walls. Since, in groove
guide, the electric field is seen to be mostly parallel to the
walls, its overall attenuation at higher frequencies is much
lower than that of rectangular waveguide, where most of
the field is perpendicular at the top and bottom walls.

The greater width in the middle, or central, region was
shown by T. Nakahara [3]-[5] to serve as the mechanism
that confines the field in the vertical direction, much as the
dielectric central region does in H guide. The field thus
decays exponentially away from the central region in the
narrower regions above and below, as shown in Fig. 2(b).
If the narrower regions are sufficiently long, it does not
matter if they remain open or are closed off at the ends.
One may therefore regard the change from rectangular
waveguide to groove guide as involving the replacement of
most of the top and bottom walls in rectangular waveguide
by reactive walls.

Work on the groove guide progressed in Japan [6], [7]
and in the United States [8]-[10] until the middle 1960’s,
but then stopped and was later revived and developed
further by D. J. Harris and his colleagues [11], [12] in
Wales. The recent work is mainly experimental, being
associated with components for groove guide.

The theoretical approach to the propagation constant of
the dominant mode taken by most of the previous inves-
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tigators {4]-[7], [9] has been to produce a first-order result
by taking only the dominant transverse mode in each
region of the cross section, and then obtaining the disper-
sion relation on use of the transverse resonance condition.
That procedure, which neglects the presence of all higher
transverse modes, is equivalent to accounting for the step
junction between the central and outer regions by employ-
ing a transformer only, and by ignoring the junction sus-
ceptance entirely. With that approximation, a simple dis-
persion relation is obtained, which produces reasonably
good agreement with measured data when the step discon-
tinuity is small. More accurate theoretical phrasings were
presented in [4]-[7] by accounting for the susceptance by
taking an infinite number of higher modes on each side of
the step junction and then mode matching at the junction.
The resulting expressions involve matrices which, even
after the necessary truncation, are messy to compute from.
When only one or two higher modes are included, as in [6]
and [7], the improvement in accuracy is quite small, and
the added complexity in calculation is substantial.

The approach in this paper is to establish a proper
transverse equivalent network, identify the appropriate
transverse mode (which is hybrid), obtain an accurate
expression in closed form for the step-junction suscep-
tance, and then apply the transverse resonance condition to
the now-complete transverse equivalent network, which
yields the relevant dispersion relation for the propagation
constant. This dispersion relation is simple, in closed form,
and very accurate, as demonstrated in Section III, by
comparison with measured data from [4] and [5].

II.

The complete transverse equivalent network for the
groove guide is derived in this section by starting with a
proper phrasing of the problem and then by putting to-
gether all the constituent elements. From this network,
which characterizes the cross section of the guide, we
finally obtain, via the transverse resonance condition, a
dispersion relation for the propagation constant which is in
simple closed form and yet accurate. The essential new
constituent in the transverse equivalent network is a simple
closed-form expression for the step-junction susceptance.

THE TRANSVERSE EQUIVALENT NETWORK

A. Transverse Resonance Approach

The general transverse resonance approach to deriving
the propagation characteristics of a waveguiding structure
is to obtain first a transverse equivalent network descriptive
of the guide’s cross section. That network is based on a
building-block approach, in which uniform waveguide re-
gions in the cross section are represented by transmission
lines, and junctions or other discontinuities are represented
by lumped elements. By inspection of the field configura-
tions in the respective regions of the cross section, one then
identifies the correct modes which the transmission lines
represent, and then obtains the appropriate mode functions
for those modes and the proper characteristic impedances
for the transmission lines. The lumped elements corre-
sponding to the discontinuities can be recognized in some
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Fig. 3. Simplifications produced by short-circuit bisection. (a) Cross
section of groove guide. (b) Form of transverse equivalent network.
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instances, but need to be derived in other cases. When all
the constituents of the network are known, a dispersion
relation for the propagation characteristics of the wave-
guide is obtained by apphcat1on of the transverse reso-
nance condition.

A simplification in the transverse equivalent network is
immediately available here by taking symmetry into
account. By inspection of the structure in Fig. 1 and the
field lines in Fig. 2(a), it is evident that the cross section
can be bisected in short-circuit fashion, and that the result-
ing cross section and the corresponding form of the trans-
verse equivalent network become the simplified ones shown
in Fig. 3(a) and (b), respectively.

We must first identify the transverse mode which each
transmission line represents, and correspondingly de-
termine how the characteristic admittances ¥, and Yy
relate to the transverse wavenumbers k, and k;. These
relations are discussed in the next section, together with the
transverse mode functions. Since the longitudinal mode
under investigation is the dominant mode of groove guide,
we recognize that the transverse wavenumbers in the x-
direction are

v ’__1
kx—; and k)= p (1)

in the central region of height » and in the outer regions,
respectively, so that the various transverse wavenumbers
are related to the longitudinal (propagation) wavenumber
k, = by the sum of the squares relations

B =ki-k2~(n/a) )
B2=kZ— kP —(n/a’)’. (3)

The free-space wavelength A, the guide wavelength A, of
the longitudinal mode, and the cutoff wavelength A, of the
longitudinal mode are given by

Ao=2m/ky, Ag=2m/B, A.=2m/k,
where the total transverse wavenumber k, is
k2 =k2+(m/a)’ =k +(n/a’)’. (5)

Since the cross section contains only a single dielectric
medium, the total transverse wavenumber %, is a constant
independent of frequency.

Since the guided dominant longitudinal mode is non-
radiating, k, is real and kj must be imaginary; that is, the
unprimed (central) transmission line is above cutoff trans-

(4)
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versely and the primed (outer) transmission line is below
cutoff transversely. (Those statements represent the facts
that the fields in the central region of the groove guide are
transversely propagating, and that those in the outer re-
gions are transversely evanescent, as shown in Fig. 2(b).
However, propagation occurs longitudinally in all parts of
the cross section, of course.) If the below-cutoff primed
line is sufficiently long, it does not matter how the line is
terminated. On the other hand, if the narrower outer
sections of the groove guide are closed by metal plates, and
the outer sections (of length ¢, say) are not sufficiently
long, the primed transmission line in the network of Fig.
3(b) must be terminated by a short circuit after a length ¢
of transmission line. This “closed” groove guide case has
been treated in detail (in a different way) in [6] and [7].

The box in Fig. 3(b) represents the step-junction discon-
tinuity, and it is discussed in detail in Section II-C. The
treatment of the step junction in this paper represents the
basis for our new contribution.

After all the constituent portions of Fig. 3(b) have been
properly characterized, the dispersion relation for the
dominant mode is found from the lowest resonance of this
network. That step is discussed in Section II-D.

B. The Transverse Mode Functions

To properly characterize the transmission lines in the
transverse equivalent network of Fig. 3(b), we must iden-
tify the correct mode in the y-direction. We first note that
with respect to the z- (longitudinal) direction, the overall
guided mode is a TE (or H) mode; that is, there exists only
a component of H in the z-direction. This result is to be
expected since the groove guide consists of a perfectly
conducting outer structure filled with only a single dielec-
tric material (air). In the y-direction, however, there exist
both E, and H,, components, so that the mode is hybrid in
that direction.

Since the groove guide is uniform in the z-direction, and
its field has only an H, component, the hybrid mode in the
y-direction is seen to be what is called by some an H-type
mode with respect to the z-direction, and by others an LSE
mode with respect to the z-direction. We prefer the former
notation, and we shall designate the mode in the y-direc-
tion as an H®-type mode. Altschuler and Goldstone [13]
discuss such modes in detail and present the field compo-

nents for them and the characteristic admittances for trans-
mission lines representative of them.

For the transmission lines in Fig. 3(b), we therefore
require the mode functions and transmission-line proper-
ties of an H(*-type mode in parallel-plate guide, which
propagates in the y-direction and is hybrid in that direc-
tion, but has only an H, component in the z-direction. The
coordinate system is that given in Fig. 3(a), but it differs by
a rotation from the one employed in [13]. For our mode of
interest, for which k, = #/a, we find that the characteristic
admittance is given by

k2 — k2

o= wuk

(6)

y
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where k, is the propagation constant of the transmission
line. Cons1stent with this specification, the electric and
magnetic field vector mode functions e and h satisfy the
orthonormality condition

(7)

where the integration is performed over the cross section
normal to y, and we have
e (x,z)=—h,(x,z).

For the parallel-plate region, using (7), we find

e(x)= \/"sm————h (x) 9)

where the z-dependence everywhere is exp(— jk,z), and

jhkaﬂﬁ=1

(8)

k,=p.
The other field components are readily written as
1 9%h,(x,z)
hx(xaz)_ kz__kz Ax 3z
(x,2)= 1 de(x,z)
e (x,z)= ——
jky ax
“Jk dh,(x,z)
R -
so that
_ _Jk \Ez X
hX(x)_ké—kzz Pl (10)
27 1 mX
ey(x)— ; ZJ?‘C S——‘ (11)
2 kk . mX
h,(x)= PENE sin —=. (12)

Again, the exponential dependence on z is omitted because
it is the same for all field components.

The complete field expressions for the mode follow
simply as

E(x,y,2)=V(y)e (x)e ks
H,(x,y,z)=1(y)h (x)e7%*
H (x,y,z)=1I(y)h,(x)e /%
for the transverse (to y) field components, and
E,(x,y,2)=ZI(y)e,(x)e7**
H,(x,y,2) =YV (y)h,(x) ek

(13)

(14)

for the longitudinal components, where ¥, (=1/Z,) is
given by (6).

C. The Equivalent Network for the Step Junction

The step junction is a lossless asymmetric discontinuity,
and it therefore requires three real quantities for its char-
acterization. A useful equivalent circuit representation for
that type of structure is the one shown in Fig. 4. It has
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Fig. 4. The step junction and a rigorous equivalent circuit representa-
tion for it.

been found by experience with careful measurements on a
variety of step-junction discontinuities in rectangular wave-
guide [14] that the series reactance X, is always very small,
and that for most situations it may be safely neglected. The
representation in Fig. 4(b) thus conveniently reduces to a
shunt network comprised of a shunt susceptance B and a
transformer with turns ratio ».

1) The Transformer Turns Ratio: From the equivalent
circuit of Fig. 4(b), after setting X, =0, we see that the
transformer turns ratio is given simply by

v
n==.

. (15)
Consistent with (13) for the transverse electric field, we
have the voltages V" and V” given by

V(O) = fa’/’2 Et(-x309 Z)'e*(x, Z) dde

7(0) = f

since y = 0 defines the plane of the step junction shown in
Fig. 4(a) and the step is uniform along z. For simplicity,
we choose the aperture transverse electric field E, to be

xq. (17)

On use of (9) for the mode function (taking the exponential
dependence into account) and relations (16) and (17),
expression (15) for n simplifies to

a /2 /
—a’'/2
a "2 \r
sin
a2
wa’

ne[ L] 2
@1 T1-(a/a)

2) The Shunt Susceptance: To our knowledge, an ex-
pression for the shunt susceptance for the step junction
subject to the excitation shown in Fig. 2(a) is not available
in the literature. By a simple additional step, however, we
can adapt an available, but not widely known, result to our
discontinuity of interest.

We first make use of the statement summarized in Fig. 5.
To interpret that statement, we recall that the susceptance

E,(x,0,z)-¢'*(x,z)dxdz  (16)

E,(x,0,z)=E,(x)e /%"x,= Asin ZTa—J,Ce“sz

so that

(18)
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Fig. 5. Discontinuities and corresponding equivalent circuits. (a) Sym-
metrical planar aperture. (b) Step junction with the same @ and «’
dimensions as in (a).

associated with a discontinuity is proportional to its stored
power, which is comprised of the evanescent higher modes
trapped in its vicinity. With the symmerrical discontinuity
in Fig. 5(a), for which the equivalent susceptance is B,, the
stored power is the same on each side of the aperture, so
that each side of the aperture can be considered as contrib-
uting one-half of the susceptance. For the unsymmetrical
step junction in Fig. 5(b), the electric field in the aperture
will not be identical to that in the aperture of the symmet-
rical discontinuity, but it will not be much different from
it. Assuming the two aperture fields to be the same, the
contribution to the susceptance of the step junction from
the side of height a (in Fig. 5(b)) is thus equal to B, /2.
With respect to the narrow side, of height a’, the field
curvature, and therefore the higher mode stored power, is
much smaller than that on the other side, although it is not
zero. We have found, by experience with careful measure-
ments on step junctions of various types in rectangular
waveguide [14], that to a very good approximation the
susceptance of the total step junction is equal to about 0.55
B, as indicated in Fig. 5, where the narrower side contrib-
utes about one-tenth as much as the wide side. The actual
proportion contributed by the narrower side would vary
somewhat with a’/a; the ratio 0.55 must be greater than
0.50, however, which would mean no contribution at all
from the narrower side, and is not likely to be greater than
0.60, which corresponds to twice the contribution implied
by 0.55, and which we did not find in prior experience. The
average value of 0.55 that we choose is therefore not wrong
by much, if at all.

Using the rule of thumb discussed above and sum-
marized in Fig. 5, we may seek an expression for the
susceptance of the appropriate symmetric discontinuity,
subject to the incident excitation seen in Fig. 2(a), and then
take 0.55 times it for the susceptance of the step junction.
That symmetric discontinuity is not included in the Wave-
guide Handbook {15], but it is discussed in Volume 8 of the
same series [16] in the context of how Babinet’s principle
may be used creatively. The expression for the susceptance
given there [16] for the symmetric aperture, times 0.55 so
that it applies to the step junction of Fig. 5(b), and restated
in terms of k,,is

B 2a

?(; = 0.55ky—;' cot

5 ma’

L (19)
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Fig. 6. Complete transverse equivalent network for open groove guide,
for the excitation indicated in Fig. 2(a).

With (19), and (18) for the turns ratio, we now have
available expressions for the parameters of the equivalent
network for the step junction which are both simple and
accurate.

D. The Complete Transverse Equivalent Network

In the previous sections, we have deduced all the con-
stituent elements that comprise the transverse equivalent
network for the groove guide under the excitation outlined
in Fig. 2(a). The form presented in Fig. 3(b) can thus be
delineated as shown in Fig. 6, where the network has been
placed horizontally for convenience. The expressions for
parameters B, n, and Y, (and therefore Yy) are given
respectively by (19), (18), and (6). The form of the network
and the expressions for its constituents are seen to be
eminently simple, and yet they characterize the structure
very accurately.

Once the network in Fig. 6 becomes available, the de-
termination of the dispersion relation for the lowest mode
becomes an essentially trivial task. We choose a reference
plane T somewhere, say just to the left of susceptance B,
and apply the transverse resonance relation

HT)+F(T) =0
yielding
b -1 Y()’ B

Jeotk,o=——-+ j—.

2
2 2y, Y, (20)

We next recognize, as have all the previous authors, that
the outer regions, with wavenumber k3, are transversely

evanescent, so that
kj=— jlkjl (21)

and the transmission line extending to infinity is below
cutoff. Using (21), we note from (6) that

Y_k

=] (22)
Yo k)
so that (20) becomes
1k 2a _,ma’
COtky2 = 22 |k;| +ky 0.557001: Z] (23)

where (19) was employed and where it is recognized that n
is a geometry-dependent constant, independent of the
wavenumbers.
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The transverse wavenumbers k, and |k;| are related to
the longitudinal wavenumber k, =8, and the frequency,
via k,, by

2
k§=ﬁ2+[%] +k2

PTIN .A T
k=g +| 2] - k) (24)
for the central and outer regions, respectively, so that by
subtraction we have

R R

Relation (25) may then be placed into (23) to yield an
explicit expression for k,, which is seen to be dependent
on geometry only, and therefore independent of frequency.
The cutoff wavenumber k, for the groove guide then
becomes simply

12
K=+ | 2]’ (26)

The early first-order solution derived by various authors
[4]-[7], [9] corresponds precisely to the first two terms in
(23). The third term in (23) represents a particularly simple
and convenient way to take into account the influence of
all the higher modes, which the first-order solution ad-
mittedly neglects. The higher modes have alternatively
been included [4]-{7] by a mode-matching technique which
yields a dispersion relation in matrix form involving a
series of linear equations. The truncation of the matrix
depends on the number of higher modes taken into account,
but complexity increases rapidly and the added contribu-
tion from the next one or two modes has been found to be
small [6], [7]. On the other hand, the third term in (23)
eliminates the need for such matrix calculations, and per-
mits one to obtain highly accurate final results with very
little extra calculational effort. Comparison with careful
measurements from the literature 4], [5] is made in the
next section.

One final remark may be helpful. Confusion exists in the
literature regarding what is meant by the “transverse reso-
nance solution.” It is interpreted by some to mean only the
first-order solution, in contrast to the mode-matching pro-
cedure which is viewed as “exact.” The mode-matching
process is exactly phrased, but it becomes necessarily ap-
proximate once the matrix is truncated. Its accuracy must
then be examined relative to that of other approximate
methods, such as the one leading to (23). Furthermore, all
of these procedures are transverse resonance solutions; the
transverse resonance method can be employed to various
degrees of accuracy, and may or may not be phrased in
direct network terms, as it has been here.

I

The principal aim of this section, in its presentation and
discussion of numerical results, is to verify the accuracy of
the new theoretical results presented in Section II, as
embodied in dispersion relation (23) and the simple trans-

NUMERICAL RESULTS
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Fig. 7. Theoretical values of A, /2a, where A, is the cutoff wavelength,
versus relative width a’/a of groove guide. In these calculations,
b/a = 0.400. The solid curve represents our improved theory, and the
dashed curve corresponds to the first-order theory of Nakahara and
Kurauchi [4], [5].

verse equivalent network shown in Fig. 6. Toward this end,
we present in Section ITII-A below a comparison between
our theoretical numbers and the careful experimental re-
sults of Nakahara and Kurauchi [4], [5]. A secondary
purpose is the presentation of additional numerical results,
showing parametric dependences which have not been given
previously. Those additional numerical data appear in Sec-
tion III-B.

A. Comparison with Measurements

Nakahara and Kurauchi (referred to hereafter as N-K)
have presented in English their early comprehensive study
of groove guide in the form of two papers, which bear the
same title and overlap each other substantially [4], [5]. The
two figures with which we shall make comparisons are
identical in each, but the figure numbers are different for
one of them. One of these figures presents first-order
theoretical numbers for the variation of the cutoff wave-
length A, (=2w/k,) with the relative width of the outer
sections. We will superimpose our more accurate theoreti-
cal numbers on their plot to indicate that the corrections
introduced by our theory can be significant over a large
range of parameter values. The other figure contains their
experimental data together with first-order theoretical val-
ues for a number of guide cross sections. We shall superim-
pose our theoretical values on their plots to show the
improvement provided by our theory.

It should be pointed out that the symbols used for
various dimensions are different in our paper and in those
by N-K. Their b and c¢ are our a and «’, and their 2/ is
our b; the coordinate systems are identical. In the discus-
sion that follows, we employ our notation.

We first make comparison with the N-K first-order
theoretical values for A_/2a versus a’/a, which appear as
Fig. 8 in both of their papers. That curve is duplicated in
Fig. 7 here as the dashed curve; the solid curve corresponds
to the solution of (23) and then use of (26). It is seen that
the two curves are almost identical for a’/a > 0.8. In that



OLINER AND LAMPARIELLO: OPEN GROOVE GUIDE

12.0

100

(cm) @

8.0

8.0

120

(b)

8.0r

26 30 40 80
a' (cm)

Fig. 8. Comparisons between measured and theoretical values of the
cutoff wavelength A, for groove guides of various cross sections. The
solid lines represent our improved theory, the dashed curves are the
first-order theoretical values, and the points are the measured results of
Nakahara and Kurauchi [4], [5]. The insets indicate the cross-section
geometries for each measured point, where the numbers are in centime-
ters.

Y

range, the value of susceptance B/Y, is relatively small, so
that its neglect in the first-order theory is justified. For
smaller a’/a values, however, the discontinuity due to the
step junction is more pronounced, and the susceptance
contribution becomes more important, as is evident from
Fig. 7.

In their papers, N-K make the following interesting
observation. In the limit for which a’/a =1, the modal
configuration becomes that of the TE, mode in parallel-
plate waveguide of width a. In the other limit, a’/a =0,
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Fig. 9. The variations of B/ky, k,/kgy, and |k}|/k, as a function of
groove guide relative width a’/a, with @ =1.00 cm and b/a = 0.400, at
a frequency of 28.0 GHz. B is the propagation wavenumber, and k,
and |k} | are transverse wavenumbers.

one obtains the TE;; mode in rectangular waveguide of
width a. In both limits, the value of A_/2a should equal
unity, as found in Fig. 7. The curves are therefore exact in
the limits and .reasonably accurate elsewhere. The solid
curve, corresponding to our theory, should everywhere be
more accurate than the first-order theory, which is the one
that is usually employed and is represented by the dashed
line.

In [5, fig. 9] and [4, fig. 10}, N-K present the resuits of
careful measurements on a variety of groove guides. They
give the measured values of A  as a function of 4’ for
groove guides of different cross sections, and they show
how these values compare with curves obtained using
first-order theory. All of those data, plus our theoretical
numbers, are contained in Fig. 8(a) and (b) presented here;
the first-order theory is represented by dashed lines, our
more accurale theory by solid lines, and the measured data
as discrete points. The cross sections corresponding to each
set of curves are shown as insets.

It is seen that our theoretical curves agree very well with
the measured values in almost all cases. On the other hand,
the first-order theoretical values are systematically some-
what below both our theory and the measured data. It
appears, therefore, that the first-order theory represents a
rather good approximation, considering its simplicity, and
that the new theory using (23) is indeed significantly more
accurate. '

B. Additional Numerical Results

A few additional numerical results are presented here
which illustrate the dependences of the propagation (longi-
tudinal) wavenumber 8 (=k,) and the transverse wave-
numbers &k, and |k;| upon the two geometric ratios a’/a
and b/a. Our improved theory is employed in determining
these numbers. The propagation wavenumber 8 varies with
frequency, but the transverse wavenumbers do not. For
convenience, however, all wavenumbers in the discussion
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Fig. 10. Variation of certain wavenumbers with groove guide aspect ratio b/a, with a=1.00 cm and a’/a=0.700, at a
frequency of 28.0 GHz. (a) Propagation wavenumber B, (b) transverse wavenumber |k}, (¢) transverse wavenumber k&, and
(d) the ratio of the exciting field at the step junction to that at the groove center.

below are normalized to the free-space wavenumber ki,
corresponding to a frequency of 28.0 GHz, so that k,=
5.87/cm and A, =1.07 cm. The width a is also specified as
1.00 cm in these calculations.

We consider first the variations with a’/a. It was
remarked above that at the two limit points a’/a =0 and
a’/a=1 the groove guide structure degenerates respec-
tively into a rectangular waveguide of width ¢ and a
parallel-plate waveguide of width a, with TE,,-mode exci-
tation in the former and TE,-mode excitation in the latter.
Thus, for a’/a =0, we would expect k, =0, |k} = o0, and
B/k,=0.844. For a’/a =1, we should find k,=0, |k;| =
0, and B/k, = 0.844 again.

The dependences of B/ky, k,/k,, and |kj|/k, as a
function of a’/a are shown in Fig. 9(a)-(c), respectively.
For these curves, b= 0.400 cm. It is seen from Fig. 9(a)
that the value of 8/k, does not vary by more than about
+ 5 percent over the whole range of a’/a, with the highest
values at the end points and the lowest value near a’/a =
0.7. Comparison of Fig. 9(b) with Fig. 7 shows that k, /k,
and A_/2a vary qualitatively with a’/a in much the same
way, but in inverse fashion; the deviation from the end
points is greatest near a’/a = 0.7 for both. The biggest
variation appears in Fig. 9(c) for |k/], since it must vary
from zero to infinity between the end points. It is clear,

then, that greater confinement of the fields to the central
region is achieved simply by reducing the a’/a ratio, and
that the value of 8/k, (=A,/A,) is changed little in the
process.

Finally, we consider the variation of these wavenumbers
with b/a, the aspect ratio of the groove guide. In the limit
b/a =0, the groove guide becomes a parallel-plate guide of
width «’, supporting the TE, mode. Thus, we would find
k| =0, k, =w/a’, B/ky=0.644 at 28.0 GHz, and &k /k,
taking on the limiting value 0.547. The behavior of the
wavenumbers with b /a, for a’/a = 0.700, a =1.00 cm, and
a frequency of 28.0 GHz, are presented in Fig. 10(a)—(c).

The end-point performance is as anticipated, but it is
also seen that 8/k, and |k/|/k, do not change much at
the larger values of b/a. (Of course, even small changes in
|k7| may be significant since that wavenumber appears in
an exponential.) The variation of k,/ko, with b/a seems
strong, but its significance is better appreciated when the
function cos(k,b/2) is evaluated. That function indicates
the ratio of the dominant transverse mode field at the step
junction to that at the groove center, and is shown in Fig,.
10(d). It is therefore seen that even though k, is larger
when b is smaller, the product k b decreases as b is
reduced, and the actual field variation with y in the central
region becomes less.
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IV. CONCLUSIONS

A new solution is presented here for the propagation
properties of the dominant mode in open, but nonradiat-
ing, groove guide. This solution is a significant improve-
ment over the ones contained in the literature, in that it
permits highly accurate results for the propagation\ con-
stant even though it is simple and in closed form. Further-
more, the solution is accurate over a ‘wide range of geomet-
ric parameter values.

The d1spers1on relation for the propagation properties of
the dominant mode is (23), and it corresponds to the
lowest resonance of the transverse equivalent network given
in Fig. 6. Expressions for all the elements of this network
have been derived in such a way that they are in simple
closed form, and yet they are accurate representations.
These derivations are presented in detail in Section II. The
essentially new contribution involves the characterization
of the step-junction discontinuity. Previous representations
either neglected the higher mode content or accounted for
the higher modes in a slowly convergent manner. Our
contribution is to deduce a simple closed-form expression
for that discontinuity which accurately accounts for the
higher modes. As a result, the complete transverse equiv-
alent network contains all elements in simple closed form,
leading to a dispersion relation whwh is correspondingly
simple.

The most important numencal discussion in Section III
is that which relates to Fig. 8; comparisons are presented
in Fig. 8 of measured and theoretical results for four
different sets of geometries. The ‘careful measurements
were taken by Nakahara and Kurauchi [4], [5], and the
theoretical values are of two types: first-order results also
presented by Nakahara and Kurauchi [4], [5], and numbers
obtained using our improved theory. The comparisons
show clearly that our theory is significantly more accurate,
and agrees very well with the measurements.

Other numerical calculations are presented in Section III
to demonstrate other performance features. For example, a
comparison in Fig. 7 involving A, i
proximate solution can yield rather good results when

a’/a > 0.8, where the step-junction discontinuity is small,
but that mgmﬁcant errors can arise for other values of

a’ /a. It is also shown that the confinement of fields in the
cross section to the central region can be controlled
dramatically by simply adjusting the a’/a ratio, and that
the longitudinal wavenumber g is not strongly affected by
such an adjustment The dependences of the wavenumbers
on the aspect ratio b /a are also d1scussed
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